R是一种基于对象(Object)的语言,所以你在R语言中接触到的每样东西都是一个对象,一串数值向量是一个对象,一个函数是一个对象,一个图形也是一个对象。基于对象的编程(OOP)就是在定义类的基础上,创建与操作对象。
对象中包含了我们需要的数据,同时对象也具有很多属性(Attribute)。其中一种重要的属性就是它的类(Class),R语言中最为基本的类包括了数值(numeric)、逻辑(logical)、字符(character)、列表(list),在此基础上构成了一些复合型的类,包括矩阵(matrix)、数组(array)、因子(factor)、数据框(dataframe)。除了这些内置的类外还有很多其它的,用户还可以自定义新的类,但所有的类都是建立在这些基本的类之上的。
我们下面来用一个简单线性回归的例子来了解一下对象和类的处理。
好了,现在我们手头上有一个不熟悉的对象model,那么首先来看看它里面藏着什么好东西。最有用的函数命令就是attributes(model),用来提取对象的各种属性,结果如下:
> attributes(model)
$names
[1] "coefficients" "residuals" "effects"
[4] "rank" "fitted.values" "assign"
[7] "qr" "df.residual" "xlevels"
[10] "call" "terms" "model"
$class
[1] "lm"
可以看到这个对象的类是“lm”,这意味着什么呢?我们知道对于不同的类有不同的处理方法,那么对于modle这个对象,就有专门用来处理lm类对象的函数,例如plot.lm()。但如果你用普通的函数plot()也一样能显示其图形,Why?因为plot()这种函数会自动识别对象的类,从而选择合适的函数来对付它,这种函数就称为泛型函数(generic function)。你可以用methods(class=lm)来了解有哪些函数可适用于lm对象。
好了,我们已经知道了model的底细了,你还想知道x的信息吧。如果运行attributes(x),会发现返回了空值。这是因为x是一个向量,对于向量这种内置的基本类,attributes是没有什么好显示的。此时你可以运行mode(x),可观察到向量的类是数值型。如果运行mode(model)会有什么反应呢?它会显示lm类的基本构成是由list组成的。当然要了解对象的类,也可以直接用class(),如果要消除对象的类则可用unclass()。
从上面的结果我们还看到names这个属性,这如同你到一家餐厅问服务生要一份菜单,输入names(model)就相当于问model这个对象:Hi,你能提供什么好东西吗?如果你熟悉回归理论的话,就可以从names里头看到它提供了丰富的回归结果,包括回归系数(coefficients)、残差(residuals)等等,调用这些信息可以就象处理普通的数据框一样使用$符号,例如输出残差可以用model$residuals。当然用泛型函数可以达到同样的效果,如residuals(model),但在个别情况下,这二者结果是有少许差别的。
我们已经知道了attributes的威力了,那么另外一个非常有用的函数是str(),它能以简洁的方式显示对象的数据结构及其内容,试试看,非常有用的。
这一篇总结的真是太好了。学习了不少。谢谢!
回复删除