星期二, 六月 28, 2016

TensorFlow初体验

以前玩深度学习一直是用的theano和keras,做为谷粉不能不试一下大热的TensorFlow。首先安装起来。

TensorFlow的安装指南非常详细,我是python的anaconda环境,所以直接先创建一个新环境,创建前先更新一下conda
conda update conda
conda update anaconda
看一下目前计算机上有哪些环境
conda info --env
目前只有root环境,所以新建一个专门为TensorFlow的环境,并将root中的包克隆过来
conda create --name tensorflow --clone root
激活使用环境
source activate tensorflow
退出环境
source deactivate

使用pip来安装
pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/mac/tensorflow-0.8.0-py2-none-any.whl

然后我们可以使用jupyter notebook来启动,下面是两个最简单的示例。

星期四, 六月 09, 2016

标签传播算法

因为标注成本比较高,当你的训练数据集只有一部分数据是有标注的情况下,使用监督学习你只能扔掉那些没有标注的X。而实际上,有标注的样本和无标注的样本之间是有关系的,这种关系信息也可以用来帮助学习。这就是半监督学习标签传播(Label Propagation)算法的思路。

它的基本逻辑是借助于近朱者赤的思路,也就是KNN的思路,如果A和B在X空间上很接近,那么A的Y标签就可以传给B。进一步迭代下去,如果C和B也很接近,C的标签也应该和B一样。所以基本计算逻辑就是两步,第一步是计算样本间的距离,构建转移矩阵,第二步是将转移矩阵和Y矩阵相乘,Y里面包括了已标注和未标注的两部分,通过相乘可以将已标注的Y转播给未标注的Y。具体论文可以看这里。在sklearn模块中已经内置了这种算法,文档示例可以看这里。下面是用python的numpy模块实现的一个toy demo。

星期三, 六月 08, 2016

值乎?

刚开通了值乎,有趣的数据问题可以来问我,当然一分钟比较短啦。有严肃的长问题还是去知乎问我吧。

星期二, 五月 31, 2016

python中的数据工具箱

最近参加了第九届北京R语言大会,做了一个关于python的简单介绍。相关ppt在如下连接,需要的下载。
链接: http://pan.baidu.com/s/1dEGl63f 密码: k3y6
博客,只要有时间,我还是会继续坚持的。

星期三, 十一月 25, 2015

基于深度LSTM的中文分词

本例尝试的用多层LSTM来玩中文分词,大部分代码和之前的文章是一样的。不一样的就是使用了更复杂的模型,用了多个LSTM叠加在一起。这对于句子这种有时序特征的数据更有帮助。在前面部分的代码是计算了字向量,但是发现是没有太大必要。除了用多层LSTM,后面还尝试了双向LSTM,效果也还可以。