星期日, 十二月 08, 2013

用模拟来理解混合效应模型之一:random intercept model

混合效应模型(Mixed-effect Model)在之前文章提到过,但感觉仍是雾里看花。此番又研究了一些资料,准备来做一个系列讲讲清楚,也算是自己学习的一个总结。

普通的线性回归只包含两项影响因素,即固定效应(fixed-effect)和噪声(noise)。噪声是我们模型中没有考虑的随机因素。而固定效应是那些可预测因素,而且能完整的划分总体。例如模型中的性别变量,我们清楚只有两种性别,而且理解这种变量的变化对结果的影响。

那么为什么需要 Mixed-effect Model?因为有些现实的复杂数据是普通线性回归是处理不了的。例如我们对一些人群进行重复测量,此时存在两种随机因素会影响模型,一种是对某个人重复测试而形成的随机噪声,另一种是因为人和人不同而形成的随机效应(random effect)。如果将一个人的测量数据看作一个组,随机因素就包括了组内随机因素(noise)和组间随机因素(random effect)。这种嵌套的随机因素结构违反了普通线性回归的假设条件。